Prof. Dr. Emmanuel Müller leitet das Fachgebiet Knowledge Discovery and Data Mining. Data Mining endet dabei in vielen wissenschaftlichen und wirtschaftlichen Systemen jedoch nicht mit der Ausführung von Algorithmen. Vielmehr möchte man mit Hilfe von Analysetechniken neue, unbekannte und unerwartete Muster aufdecken, aus denen der Mensch entsprechende Entscheidungen ableiten kann. Auf der einen Seite erforschen wir effiziente Algorithmen, welche sowohl mit der Größe als auch mit der Komplexität von Datenbeständen skalieren. Auf der anderen Seite generieren unsere Algorithmen aus Sicht der Anwender leicht zu verifizierendes Wissen.
Das Fachgebiet entwickelt hierzu neue Methoden zur Datenanalyse von großen und komplexen Datenbeständen. Dies beinhaltet unter anderem Methoden zur Selektion von relevanten Attributen in hochdimensionalen Datenbanken, zur Korrelationsanalyse in multivariaten Datenströmen und zur Erkennung homophiler Strukturen in attributierten Graphen. Weitere Forschungsgebiete sind die Analyse von multi-skalen Sensordaten und die interaktive Exploration von heterogenen Informationssystemen, welche in Kooperation mit dem Deutschen GeoForschungsZentrum GFZ erforscht werden.